

HYDRAULICKÉ SYSTÉMY UKŁADY HYDRAULICZNE

FPH PRESSURE FILTERS

DESCRIPTION

3-way inline filter

MATERIALS

Head: Aluminum alloy

Bowl: Steel

Bypass valve: Polyamide

Seals: NBR Nitrile (FKM Fluoroelastomer on request)

Indicator housing: Brass

PRESSURE

Max working: 2 MPa (20 bar)

Collapse, differential for the filter element:

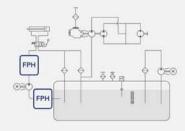
300 kPa (3 bar)

BYPASS VALVE

Setting: 170 kPa (1,7 bar) ± 10%

FLOW RATE

Qmax 400 l/min


WORKING TEMPERATURE

From -25° to +110° C

COMPATIBILITY (ISO 2943)

Full with fluids: HH-HL-HM-HV-HTG (according to ISO 6743/4)
For fluids different than the above mentioned, please contact our Sales Department.

HYDRAULIC DIAGRAM

ORDERING AND OPTION CHART

ME = FormulaUFI.WEB 60 μm

MF = FormulaUFI.WEB 90 µm

5B = visual differential 130 kPa (1,3 bar)

31 = pressure gauge, rear connection

6B = electrical differential 130 kPa (1,3 bar)

T0 = elect. diff. 130 kPa (1,3 bar) with thermostat 30°C

CLOGGING INDICATOR**

7B = indicator 6E with LED

0R = 1/8" predisposition

P1 =SPDT, pressure switch

XX = no accessory available

10 = vacuum gauge

91 = vacuum switch

X X ACCESSORI / ACCESSORIES

03 = port, plugged

F P H COMPLETE FILTER FAMILY

SIZE & LENGTH

PORT TYPE

	B = BSP thread	В	В	В	В	
	N = NPT thread	N	N	N	N	
	PORT SIZE					
	03 = 3/8"	03	-	-	-	
	04 = 1/2"	04	(+)	. 	-	
	06 = 3/4"	u u	06	- 27	2	
	08 = 1"	-	08	- 1	-	
	10 = 1" 1/4	-	4	10		
	12 = 1" 1/2	-	45	-	12	
В	BYPASS VALVE				. 7	
	B =170 kPa (1,7 bar)	В	В	В	В	1 "
	SEALS				SEALS	
	N = NBR Nitrile	N	N	N	N	
	F = FKM Fluoroelastomer	F	F	F	F	
	FormulaUFI MEDIA					FormulaUFI MEDIA
	FA = FormulaUFI.MICRON 5 $\mu m_{(c)} \beta > 1.000$	FA	FA	FA	FA	
	FB = FormulaUFI.MICRON 7 $\mu m_{(c)} \beta > 1.000$	FB	FB	FB	FB	
	FC = FormulaUFI.MICRON 12 $\mu m_{(c)} \beta > 1.000$	FC	FC	FC	FC	
	FS = FormulaUFI.MICRON 16 μm _(c) β>1.000	FS	FS	FS	FS	
	FD = FormulaUFI.MICRON 21 μm _(c) β>1.000	FD	FD	FD	FD	
	FE = FormulaUFI.MICRON 30 μm _(c) β>1.000	FE	FE	FE	FE	

FILTER ELEMENT FAMILY E R A

SIZE & LENGTH

31

ME

MF

03

5B

6B

7B

T0

0R

31

P1

10

91

XX

ME

MF

03

5B

6B

7B

TO

0R

31

P1

10

91

XX

ME

MF

03

5B

6B

7B

TO

0R

31

P1

10

91

XX

ME

MF

03

5B

6B

7B

TO

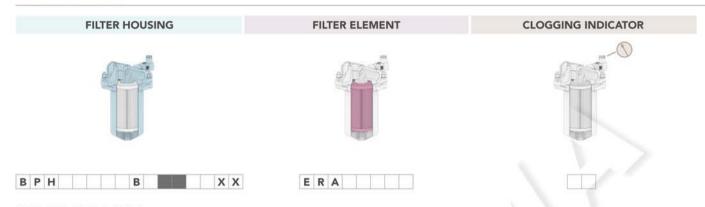
0R

31

P1

10

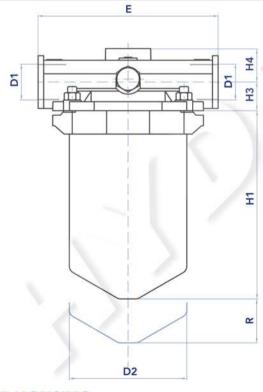
91

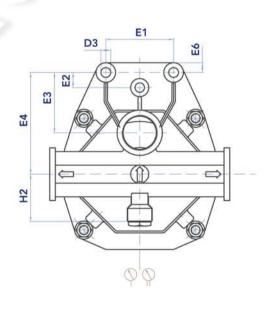

XX

40

50

^{**} When the filter is ordered with FKM seals, the first digit of the indicator code is a letter (please see Clogging Indicator Chapter for further details)


SPARE PARTS



SPARE SEAL KIT

	NBR	FKM	NBR		FKM		NBR	FKM
FPH31	521.0006.2	521.0075.2	FPH40	521.0007.2	521.0076.2	FPH50-52	521.0008.2	521.0077.2

INSTALLATION DRAWING

FILTER HOUSING

	D1	D2	D3	E	E1	E2	E3	E4	E6	H1	H2	H3	H4	R	kg
FPH31	3/8"- 1/2"	81	11	114	50	0.79	42	70	10	114	44	19	27	20	1,3
FPH40	3/4" - 1"	114	13	150	50	1721	50	85	13	212	58	30	35	20	3,2
FPH50	1"1/4	156	13	240	90	20	80	135	13	200	62	38	45	25	6,1
FPH52	1"1/2	156	13	240	90	20	80	135	13	265	62	38	45	25	6,8

FILTER ELEMENT

					AREA (cm²)				
	A	В	C	Kg	Media F+	Media M+			
ERA31	70	28	85	0,20	620	990			
ERA40	99	40	170	0,60	3.630	3.390			
ERA50	130	63	140	1,00	4.450	4.360			
ERA52	130	63	200	1,35	6.190	6.520			

MAINTENANCE

- 1) Stop the system and verify there is no pressure in the filter.
- 2) Collect the oil inside the filter with a suitable container.
- 3) Unscrew the nuts (1) to disassemble the flange (2) from the bowl (3) positioned below the head (4). N.B. The bowl is in contact only with the flange.
- 4) Empty and clean the bowl (3). Make sure the gasket (5) and the spring (6) remain on the bottom of the bowl. These parts have to be reused.
- Remove the dirty filter element (7).
 N.B. The exhausted filter elements and the oil dirty filter parts are classified "Dangerous waste material" and must be disposed

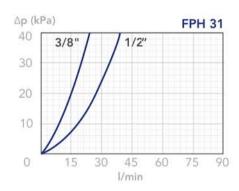
of according to the local laws, by authorized Companies.

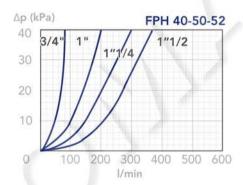
- Check the filter element part number on the filter label or in the ordering and option chart.
 Use only original spare parts,
- 7) Lubricate the element o-ring gasket (8) with oil.
- 8) Insert the clean element into its seat with care.
- Fit the bowl into the flange and place the flat gasket. The spring must be centred on the bottom of the bowl.
- 10) Place the flange against the head, centering the 4 threaded pins.
- 11) Screw manually a nut and its washer (1) onto the stud without locking. Repeat the same operation with the opposite nut, and then with the remaining two.
- 12) Tighten all nuts gradually with the cross system until the bowl is completely locked, to ensure the correct adhesion between the container and the head.

Accessories:

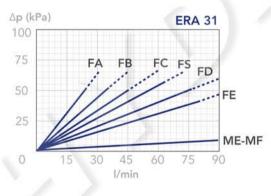
Clogging indicator (9).

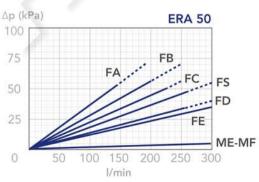
If damaged, unscrew and replace it (check the part number in the ordering and option chart). Follow the instruction (a) or (b) according to the type of indicator in use.

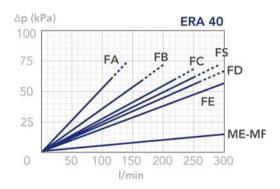

- a) Differential clogging indicator with metric thread connection (9a).
 Lubricate the o-ring gaskets with oil and screw until stop, with a tightening torque of 40 Nm +5/0.
- b) Clogging indicator with 1/8" thread connection (9b). Apply a thread-sealing and screw until tight. An over-tightening can damage the thread.

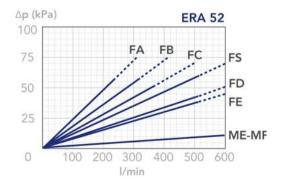

PRESSURE DROP CURVES (Δp)

The "Assembly Pressure Drop (Δp) " is obtained by adding the pressure drop values of the Filter Housing and of the Clean Filter Element corresponding to the considered Flow Rate and it must

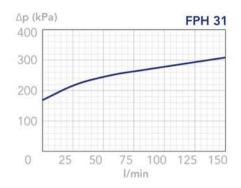

be lower than 50 kPa (0,5 bar). In any case this value should never exceed 1/3 of the bypass setting.

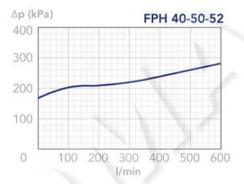

FILTER HOUSING PRESSURE DROP (mainly depending on the port size)





CLEAN FILTER ELEMENT PRESSURE DROP WITH F+ AND M+ MEDIA (depending both on the internal diameter of the element and on the filter media)





BYPASS VALVE PRESSURE DROP

When selecting the filter size, these curves must be taken into account if it is foreseen that any flow peak is to be absorbed by the bypass valve, it also must be of proper configuration to avoid pressure peaks. The valve pressure drop is directly proportional to fluid specific gravity.

N.B.

All the curves have been obtained with mineral oil having a kinematic viscosity 30 cSt and specific gravity 0,9 kg/dm³; for fluids with different features, please consider the factors described in the first part of this catalogue. All the curves are

obtained from test done at the UFI FILTERS HYDRAULICS Laboratory, according to the specification ISO 3968:2005. In case of discrepancy, please check the contamination level, viscosity and features of the fluid in use.